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Abstract 

Identifying the genetic variations impacting human brain structure and their further effects 

on cognitive functions, is important for our understanding of the fundamental bases of 

cognition. In this study, we take two different approaches to this issue: classical genome-

wide association analysis (GWAS) and a relatedness-based regression approach (REL) to 

search for associations between genotype and brain structural measures of gray matter and 

white matter. Instead of searching genetic variants by testing the association between a 

phenotype trait and the genotype of each single-nucleotide polymorphism (SNP) as in 

GWAS, REL takes advantage of multiple SNPs within a genomic window as a single measure, 

which potentially find associations wherever the functional SNP is in linkage disequilibrium 

(LD)
 
with SNPs that have been sampled. We also conducted a simulation analysis to 

systemically compare GWAS and REL with respect to different levels of LD. Both methods 

succeed in identifying genetic variations associated with regional and global brain structural 

measures and tend to give complementary results due to the different aspects of genetic 

properties used. Simulation results suggest that GWAS outperforms REL when the signal is 

relatively weak. However, the collective effects due to local LD boost the performance of 

REL with increasing signal strength, resulting in better performance than GWAS. Our study 

suggests that the optimal approach may vary across the genome and that pre-testing for LD 

could allow GWAS to be preferred where LD is high and REL to be used where LD is low, or 

the local pattern of LD is complex. 

 

Keywords: brain, genetic relatedness, GWAS, linkage disequilibrium 
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Introduction 

The human brain underpins our interaction with the environment through basic 

sensorimotor processing as well as a wide range of intellectual functions such as attention, 

memory, decision making and linguistic ability. It is well-known that the structure of the 

brain is tightly associated with various cognitive functions 
1, 2, 3

, e.g., fluid and crystallized 

abilities 
4, 5, 6

. However, the genetic variations impacting brain structure, which further affect 

cognitive functions, are still not fully understood. Resolving the underlying brain-specific 

genetic signatures will shed light upon our understanding of the fundamental bases of 

cognition. 

Recent genome-wide association studies (GWAS) have revealed genetic variants influencing 

the volume of both cortical regions 
7
 and subcortical nuclei 

8
. Moreover, attempts have 

been made to provide a comprehensive description of the genetic determinants of cortical 

structure which involves measures such as cortical thickness, surface area and volumes 
9, 10, 

11
 and white matter microstructure 

12
. GWAS searches genetic variants by testing the 

association between a phenotype trait (e.g., global or regional brain structure measure) and 

the genotype of each single-nucleotide polymorphism (SNP) across the genome. Previous 

studies have revealed that any given brain region’s structural property may be associated 

with multiple SNPs and that these may be either clustered in one genomic region, or spread 

across several different chromosomes, suggesting a polygenic architecture 
11

. 

In the present study, we adopt a relatedness-based regression approach (REL) 
13

 to search 

for associations between genotype and brain structure. REL uncovers patterns where 

individuals with similar genotypes are also similar in their phenotypes and hence uses the 

same principle as representational similarity analysis, a method widely used in 

neuroimaging studies 
14

. By summarizing the contribution of multiple SNPs within a genomic 

window as a single measure, genetic relatedness, statistical power is increased through a 

reduction in the number of independent tests that are conducted. Furthermore, even when 

the functional SNP itself has not been sampled, the expectation remains that individuals 

who are more related are more likely to share a given allele. Consequently, REL has the 

potential to find associations wherever the functional SNP is in linkage disequilibrium (LD) 
15 

with SNPs that have been sampled. Unlike other methods 
16, 17, 18, 19

 that aggregate multiple 

SNPs to improve power by reducing multiple-testing burden, REL utilizes the relatedness 

between individuals, offering a flexible way to control for multiple other variables. For 

example, it is possible to fit subject age, ethnicity and genome-wide or chromosome-wide 

relatedness as covariates to control for background shared ancestry and phenotypic 

changes over a lifetime, while may be challenging in GWAS 
20, 21

.   

Here we report the results of a systematic search using both GWAS and REL for genetic 

variants related to grey matter and white matter phenotypes, as measured by magnetic 

resonance imaging (MRI). For grey matter, we tested the volume of 55 cortical and 

subcortical regions (measures of homologous brain areas were averaged across both 

hemispheres). For white matter, we examined the fractional anisotropy (FA) of 10 white 

matter tracts which is a measure of integrity (8 within-hemisphere homologous tracts with 

their FA values averaged across both hemispheres and 2 cross-hemisphere tracts). We also 
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applied principal component analysis (PCA) to all the regional measures of grey matter and 

white matter separately and searched for the genetic associations of the first two principal 

components (i.e., PC1, PC2) which could be considered as global measures of brain structure. 

Finally, we conducted a simulation analysis to evaluate the performance of GWAS and REL 

with respect to different levels of LD.  

 

Materials and methods 

Cambridge Centre for Ageing and Neuroscience (Cam-CAN) project  

All the data analysed in this study are from the Cam-CAN project (www.cam-can.com) which 

focuses on understanding the lifespan neurocognitive development. It consists of a 

population-based sample of 708 healthy participants, age range 18-88 years with a wide 

range of epidemiological, cognitive, genetic and neuroimaging data (for more details see 
22

). 

The Cam-CAN project was approved by the Cambridgeshire 2 (now East of England - 

Cambridge Central) Research Ethics Committee. All participants provided written informed 

consent. 

 

Genetic data 

Whole-genome SNP data were collected from 708 individuals. DNA was genotyped using 

Illumina Infinium OmniExpressExome arrays. This chip covers >960,000 SNPs spread through 

the genome, capturing a large proportion of common variation. The raw genotype data 

were filtered in GenomeStudio according to standard procedures 
23

. Additional quality 

control checks were performed in PLINK 
24

 (SNPs were removed if Hardy Weinberg p < 1x10
-

6
 , missingness > 0.05, or minor allele frequency < 0.01; individuals were removed if total 

SNP missingness > 0.05, or where multidimensional scaling indicated non-European origin). 

Lastly, ambiguous SNPs were removed (i.e., A-T or G-C SNPs). After quality control, the 

dataset included 628,511 directly genotyped SNPs from 634 CamCAN individuals. 

 

Brain imaging data 

Brain imaging data were collected from all 708 participants using a Siemens 3T TIM TRIO 

(Siemens, Erlangen, Germany) magnetic resonance imaging (MRI) scanner at the Medical 

Research Council Cognition & Brain Sciences Unit (MRC CBU), Cambridge, UK. Two widely 

used metrics were adopted to characterise individual brain structure: regional grey matter 

volume and white matter tract FA. See 
25

 for more details about MRI processing pipeline 

and extraction of the brain structural measures mentioned below. 

Regional grey matter volume characterises the distinct morphological signature of the size 

of anatomical regions of interest (ROIs) in individuals. Fractional Anisotropy (FA) reflects the 

integrity of white matter tracts reconstructed in diffusion tensor imaging (DTI) which maps 

the tractography in the brain 
26

. FA was obtained by quantifying the anisotropy of the 
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movement of water molecules constrained by the fibre bundles as a scalar that ranges from 

0 (completely isotropic) to 1 (completely anisotropic).  

Regional grey matter volume was estimated using 1mm
3
 isotropic T1- and T2-weighted 

images which were acquired by a MPRAGE sequence (TR = 2250 ms, TE = 2.98 ms, TI = 900 

ms, FA = 9°, FOV = 256 x 240 x 192 mm
3
) and a SPACE sequence (TR = 2800 ms, TE = 408 ms, 

FA = 9°, FOV = 256 x 256 x 192 mm
3
). The T1- and T2-weighted images were co-registered to 

the Montreal Neurological Institute (MNI) template and combined to segment the brain into 

images of different tissues. A group template image was created by conducting 

diffeomorphic registration (DARTEL) using the grey matter images. We adopted the Harvard 

Oxford Atlases (HOA) which defines 116 anatomical ROIs that cover all the grey matter in 

the brain (Fig. 1a). Results of six limbic and subcortical ROIs were not used due to technical 

issues, thus the regional grey matter volume was only calculated for the remaining 110 ROIs 

which were further normalized by the total intracranial volume to control for individual 

differences. Regional volume of homologous areas was averaged across both hemispheres, 

resulting in 55 phenotype measures (see Table S1 for the full list of all ROIs) to be tested in 

GWAS and REL. 

White matter FA was estimated using 2mm
3
 isotropic diffusion-weighted images acquired 

with a twice refocused-spin-echo sequence (30 diffusion gradient directions with each for b-

values 1,000 and 2,000 s·mm
-2

, three images with a b-value of 0, TE = 104 ms, TR = 9.1 s, 66 

axial slices, FOV = 192 × 192 mm
2
). DWI images were corrected for eddy current and head 

motion, then skull-stripped and co-registered with individual T1-weighted image, finally 

fitted to a non-linear diffusion tensor model. FA was computed at each voxel using the 

tensor’s eigenvalues. We adopted the John Hopkins University (JHU) white matter 

tractography atlas which covers 20 white matter tracts in the brain (Fig. 1a). Data of two 

white matter tracts were unavailable due to technical issues, thus the structure of white 

matter was characterised by the mean FA value of each of the 18 available tracts. Apart 

from the two cross-hemisphere tracts, FA values of the 16 within-hemisphere tracts were 

averaged across hemispheres (see Table S2 for the full list of all tracts). 

Participants who lacked relevant MRI scans or had poor-quality data were excluded. Any 

participant with measure that was 3 standard deviations away from the group mean was 

also excluded. Among the 708 participants, 586 of them had data for the calculation of 

regional grey matter volume and 577 of them had data for the calculation of white matter 

FA. All MRI data were analysed using the SPM12 (www.fil.ion.ucl.ac.uk/spm) and FSL 

(fsl.fmrib.ox.ac.uk). To control for the effects of age and gender, we conducted a linear 

regression for each grey matter or white matter phenotype measure with both age and 

gender as predictor variables. The standardized residuals were used in further GWAS and 

REL analyses. PCA was applied to these age and gender corrected brain measures of grey 

matter and white matter separately. Their first two principle components (PC1 and PC2) 

were not linear correlated with either age or gender. As global measures, PCs of grey matter 

and white matter were also adopted to find genetic associations using GWAS and REL.   
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GWAS  

GWAS was conducted using GEMMA 
27

, based on a total of 628,511 biallelic SNPs. 

Significance was determined according to the Wald p-value returned in the fitted model. We 

tested individual grey matter ROIs and whiter matter tracts as well as their first two PCs. 

Bonferroni correction was applied to correct for the number of SNPs tested for each brain 

measure, resulting in a genome-wide significance threshold of P = 7.96 x 10
-8

.  

 

Relatedness-base regression 

REL was conducted by fitting the multiple linear regression in the following form: 

��������~��	�
��� � �
�
�
��� � � 

Each pairwise comparison between the brain measure of two individuals yielded a similarity 

score Brainrel which is the response variable. Local relatedness (Localrel) was calculated using 

SNPs in a genomic window with fixed size, while global relatedness (Globalrel) was calculated 

using all the SNPs (outside the genomic window) on the chromosome where the current 

genomic window is located 
13

. We prefer to use same chromosome markers rather than all 

other markers because we are not interested in relatedness per se, but more to control for 

background stochastic variation in the probability of markers being identical.  

For each grey matter ROI and each white matter tract, we removed linear age- and gender-

related changes in phenotype by extracting standardised residuals from a regression with 

age and gender as the predictor variables. These standardized residuals were then used as 

input variable in a PCA. The first two components of the white matter tract FA explained 

38.8% and 12.8% of the total variance separately, while those of the regional grey matter 

volume explained 22.8% and 6.2% of the total variance separately. For each brain measure 

(either PC score or regional measure), we first calculated the absolute difference between 

individuals, which were then subtracted from the maximal absolute pair-wise difference to 

obtain the brain relatedness, i.e., Brainrel (Fig. 1). Both local and global relatedness were 

estimated using the same algorithm 
28

. Non-overlapping genomic windows were 

constructed with sizes of either 50kb or 100kb (Fig. 1). For 50kb size, there are 52,210 

windows with an average of 11.5 ± 7.2 SNPs (mean ± std) per window. For 100kb size, there 

are 26,383 windows in total with 22.6 ± 12.9 SNPs per window. 

Significance of the relationship between the brain measure and the local genetics was 

determined by a variation of the Mantel test 
13

. Specifically, for each genomic window, we 

permuted the variable localrel by re-calculating it with a randomised order of individuals in 

each permutation, which yields an Akaike Information Criterion (AIC) value. P-values were 

calculated as the ratio of permutations that resulted in a lower AIC compared with the non-

permutated value. For the purpose of improving computational efficiency, the permutation 

tests were terminated when 5 extreme AIC values (i.e., lower than the original value) were 

obtained or where the total permutation number reached 2 million, thus the lower limit of 

p-value is 5 x 10
-7

. Note that p-values will tend to be slightly conservative if the permutation 

test was ended with more than 3 extreme AIC values. Bonferroni correction was applied to 
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correct for the number of windows for each brain measure, resulting in genome-wide 

thresholds of P = 9.58 x 10
-7 

and P = 1.90 x 10
-6 

for 50kb- and 100kb genomic windows 

separately. 

 

Simulation for the comparison between GWAS and REL 

We were interested to compare the performance of GWAS and REL on our data. In any 

given genomic region, performance is likely to be influenced by the LD present, since this 

will determine the extent to which the genotype at one locus carries information at a 

nearby, potentially unsampled, second locus. To explore this aspect, we conducted a 

simulation-based analysis, using the Python package ‘moments’ 
29

 to estimate LD for the 

covariance of genotypes, D, from unphased data.  

� � ������ � ������ 

where A/a and B/b are the alleles at two different loci. 

To avoid biases due to variation in information content and a possible correlation between 

SNP density and the variance in estimate of D, for our study we selected 100kb windows 

containing exactly 25 SNPs. Within each qualifying window we calculated all pair-wise LD 

values as D
2
 and used the average to represent the LD of the window as a whole. Note that 

there existed SNP pairs with a negative D value in some genomic windows, which may 

cancel out the overall within-window effects when both positive and negative D values are 

averaged, thus we used D
2
 instead of D. Across the genome we found 26,383 windows (i.e., 

the same 100kb-window division for empirical data) and from these selected 100 that that 

covered the full observed range of values for mean D
2
.  

We next simulated a genotype-phenotype association. To do this, one of the 25 SNPs was 

selected from a window and designated the ‘functional’ SNP. To make it functional, an 

artificial phenotype was created by re-assigning the PC1 values for regional grey matter 

volume across individuals according to the genotype of each individual at the functional SNP. 

The strength of association could be varied by adding Gaussian noise ��0, ��	
��
� � to the 

artificial phenotype measure, where ��	
�� � �
���	��
�/���. SNR is the signal-to-noise 

ratio (SNR) and was set in the range 0.1 to 1 to vary the strength of the signal present (see 

an example of simulated signal with SNR = 1 in Fig. 2A).  

For each genomic window, simulations was conducted twice with different functional SNPs: 

(1) with the SNP in the highest overall LD with the other SNPs within the window (measured 

by the sum of absolute D between the functional SNP and the other SNPs) i.e., MaxLD fSNP; 

(2) with the SNP in the lowest overall LD, i.e., MinLD fSNP. Note that the functional SNP was 

excluded in the following GWAS and REL. Simulation of one genomic window was repeated 

50 times with different Gaussian noise sampled with the same SNR. For both GWAS and REL, 

significance was determined through permutation test. We ran 1,000 permutations for both 

GWAS and REL with a randomised order of individuals in each permutation (see Fig. 2b for a 

schematic diagram of the simulation pipeline). For GWAS, genotype of each SNP was 

permutated. For REL, both local and global relatedness was recalculated after shuffling the 
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individuals in the cohort. P-value is calculated as the ratio of permutations that return a 

parameter estimate larger than the original value.  

 

Results 

Below we present the results of two tests for genotype-phenotype associations, the 

pairwise relatedness analysis, REL, and a classical genome-wide association analysis, GWAS. 

Both approaches were applied both to each individual measure (grey matter, n = 55 ROIs; 

white matter, n = 10 tracts) and also to the four metavariables PC1GREY, PC2GREY, PC1WHITE 

and PC2WHITE.  

 

GWAS 

Applying conventional GWAS, we identified ten genome-wide significant loci associated with 

either individual measures of grey matter volume or individual white matter tract FA. 

However, no hit was identified for either PC1 or PC2 for either of these two types of brain 

structure measures. Fig. 3 summarises the hits for individual measures (see Table S3 for the 

full description of all the significant loci). For the regional grey matter volume, rs872376 on 

chromosome 1 is associated with parietal operculum cortex, rs36016914 on chromosome 3 

is associated with lateral globus pallidus. Hits were also found for occipital fusiform gyrus 

(rs62621376 on chromosome 17 which is within the gene TTYH2), postcentral gyrus 

(rs10424191 on chromosome 19 which is located in the gene ZNF536) and planum 

temporale (rs5765545 on chromosome 22). In addition, three adjacent SNPs were found to 

be associated with the pars triangularis of inferior frontal gyrus. As for the white matter 

tract FA, two SNPs were identified to be associated with forceps major (rs143118835 on 

chromosome 7) and inferior fronto-occipital fasciculus (rs9882746 on chromosome 3). See 

Manhattan plots of all the global and regional measures in Fig. S1&S2.  

 

REL 

Using the pairwise-based relatedness approach, we identified nine 100kb windows and five 

50kb windows associated with either one of the two principal components or with one of 

the regional brain structural measures. By implication, individuals with similar traits also 

tend to be unusually related to each other at these particular genomic regions after 

correcting for background relatedness on the same chromosome. For PC1GREY we found a hit 

on chromosome 17 where both the 50kb and 100kb windows yielded significant 

associations (centred at 37184.090kb and 37180.052kb separately, rs11868358 locates at 

the centre for both window sizes, note that loci positions were based on the reference 

assembly sequence GRCh37). This is to be expected because in this case the larger window 

only carries one more SNP compared with the smaller window (7 vs 6 SNPs). Both hit 

windows overlap with the gene LRRC37A11P. For PC1WHITE we found two hits, one on 

chromosome 10, again for both the 50kb and 100kb window sizes which in this case 
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included 22 and 35 SNPs separately (centred at 133520.594kb with the closest SNP 

rs11156567 and 133546.017kb with the closest SNP rs9419569 separately), the other on 

chromosome 14 for 100kb window size only (centred at 89578.729kb with the closest SNP 

rs4904507). The hit on chromosome 10 overlaps with the gene CLVS1, while the hit on 

chromosome 14 intersect with the gene FOXN3. 

Applied to the individual measures separately, REL also revealed a number of hits, 

summarised in Table S4. For grey matter volume, we identified a hit on chromosome 16 

showing significant association with the precentral gyrus for both 50kb and 100kb window 

sizes (centred at 20967.465kb and 20946.118kb with rs34051490 and rs4783513 located the 

closest to each window centre) with 16 and 24 SNPs included separately, overlapping with 

genes DNAH3, LYRM1 and DCUN1D3. Two hits with 100kb window size were found to be 

associated with the postcentral gyrus, one was the same hit for precentral gyrus, the other 

was found on chromosome 8 with 36 SNPs included (centred at 61915.362kb with 

rs10957177 located at the window centre). Besides, we identified a hit on chromosome 14 

associated with the posterior middle temporal gyrus for both 50kb and 100kb window sizes, 

centred at 33903.704kb and 33877.736kb with rs11621942 and rs4982084 located at each 

window centre, overlapping with the gene NPAS3. For white matter tract FA, we found a 

100kb window size hit associated with the superior longitudinal fasciculus on chromosome 6 

(centre at 170625.624kb with 20 SNPs among which rs6923384 locates at the window 

entre), which intersected with genes DLL1, FAM120B, MIR4644, and LINC01624. See 

Manhattan plots of all the global and regional measures in Figs. S1&S2.  Note that slightly 

more hits were found with larger windows (9 hits for 100kb and 5 hits for 50kb window size), 

possibly because neighbouring SNPs in high LD with the actual genetic variant(s) are more 

likely to be included by a larger window.  

  

Comparison between GWAS and REL – Empirical data  

Interestingly, we observed a tendency for the two methods, GWAS and REL, to yield 

different results even when applied to the same dataset (see Fig. 3). To illustrate this trend 

we selected one trait that a hit in REL but not GWAS (PC1WHITE) and one trait that yielded a 

hit for GWAS but not REL (FA of forceps major, tract #5). For each of these two traits we 

then plotted p-values obtained by the two methods against each other, using a negative log 

scale. For both traits we analysed the data twice, once with REL ‘leading’ and once with 

GWAS ‘leading’. When REL was leading, we identified all windows yielding a REL p-value 

lower than 0.05 and plotted these against the lowest GWAS p-value among SNPs within the 

same window (left panel in Fig. 4 a&b). Similarly, when GWAS was leading, we identified all 

SNPs with a GWAS p-value lower than 0.05 and plotted these against the REL p-values of the 

genomic windows in which they were located (right panel in Fig. 4 a&b). As can be seen, 

there is little or no correlation between the sets of p-values, even for the two primary hit 

locations.  

One important difference between GWAS and REL is that GWAS is based on individual SNPs, 

making it potentially susceptible to undue influence by outliers, while relatedness in REL is 
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based on multiple observations, making it less likely to be affected by outliers. This 

difference is illustrated in Fig. 5a, where we compare a standard GWAS analysis with a 

GWAS analysis based on robust regression. In several instances, the original GWAS hit is 

clearly driven by just one or two extreme data points and significance is lost when robust 

regression is applied (see the results of GM volume #52 and WM tract FA #7). In contrast, 

reanalysing the REL hits with and without robust regression reveals very little impact on 

significance for both the 50kb and 100kb window sizes alike (Fig. 5b).  

 

Comparison between GWAS and REL – Simulation  

To compare GWAS with REL directly, we conducted a simulation analysis to evaluate their 

performance with respect to local levels of LD. We selected 100 genomic windows covering 

a wide range of LD values. Within each window we selected one SNP to act as the 

‘functional’ SNP associated with the trait of interest. To create this association, we re-

assigned trait values according to the genotype of the selected functional SNP. In this way 

we preserve the characteristics of the real data in terms of LD between SNPs within the 

window. The simulated signal injected into a genomic window can be maximized by 

selecting as the functional SNP the SNP in the highest overall LD with the other SNPs in the 

window. Similarly, signal strength can be reduced by selecting the functional SNP to be the 

one with lowest LD to other SNPs. A second way to modulate signal strength is to add 

Gaussian noise to the trait values. 

As shown in Fig. 6a, even for a relatively low signal to noise ratio (SNR), windows with high 

average LD (i.e., mean pair-wise LD among SNPs within a window) still reached the minimal 

p-value (i.e., 0.001 given 1,000 permutations) in REL. GWAS also successfully identified 

simulated functional SNPs when these were in high LD with other SNPs in the window. It can 

be seen that SNPs in positive LD with the simulated functional SNP are distinguished from 

SNPs that are in negative LD, an effect that gets stronger as the SNR is increased. The same 

trend can also be found when the SNP that has the lowest overall LD was selected as the 

functional SNP, but it requires a higher SNR to achieve similar patterns (Fig. 6b). 

Finally, we compared the performance of the two methods by calculating the ratio of dots in 

the upper left triangle to those in the lower right triangle in the p-p plots in Fig. 7. As shown 

in Fig. 7a, GWAS is more sensitive when the signal is very weak, but it is outperformed by 

REL as the SNR increases. We also calculated the detection rate of GWAS and REL, which is 

defined as the ratio of cases where the p-value reaches the most significant level given the 

number of permutations (i.e., 1/1001 for 1000 permutations). In terms of the detection rate, 

GWAS also outperformed REL when the signal is relatively weak, while REL outperformed 

GWAS when the SNR increases, especially when the functional SNP was selected as the one 

in high LD with the other SNPs within the genomic window (Fig. 7 b&c). 
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Discussion 

In this study we compared the performance of a classical GWAS analysis with REL, an 

alternative, regression-based approach involving pairwise comparisons between individuals, 

that allows genetic relatedness to be included in the model. We applied both approaches to 

a large data set of grey and while matter brain measurements. Classical GWAS is potentially 

very powerful if the functional SNP has been sampled, but is likely to be much weaker when 

there is reliance on linkage disequilibrium between a sampled SNP and an unsampled 

functional SNP. Wherever GWAS tests each SNP separately, the large number of tests 

required reduces power because of the need to correct for relatively higher rates of false 

positives. In comparison, the regression-based analysis may offer higher power by 

integrating information across multiple SNPs within a genomic window, thereby greatly 

reducing the number of tests. By focusing on relatedness, the regression method may be 

efficient at picking up signals when the functional SNP has not been sampled, though is 

likely to be less powerful than a GWAS when the functional SNP has been sampled.  

We began by summarising the measurements in the sample using PCA and testing the first 

two PCs as well as individual ROIs of both grey matter and white matter. Both approaches 

gave a similar number of hits (10 hits in GWAS, 9 hits with 100kb window size and 5 hits 

with 50kb window size in REL). However, some GWAS hits appeared to be driven by outliers 

and were lost when robust regression was applied. Our use of full Bonferroni correction is 

conservative, but we feel this is appropriate given the extent to which small numbers of 

outliers are able to impact the analysis, particularly the GWAS. Moreover, a genetic 

association is possibly driven by more than one variant, perhaps suggested by the way 

neighbouring SNPs give opposing trends (see the middle column in Fig. 6a&b). It is a further 

potential advantage of the regression approach that it is able, under some circumstances, to 

integrate over multiple variants. 

Among the loci we identified in GWAS and REL (see Tables S1&S2), the genomic window 

associated with the overall grey matter structure (i.e., PC1grey) overlapped with LRRC37A11P 

which belongs to a family of genes expressed during human corticogenesis 
30

. The genomic 

window influencing the volume of the posterior middle temporal gyrus overlapped with the 

gene NPAS3 which has an important role in brain development 
31, 32, 33

, it is also associated 

with learning disability and mental disorders such as schizophrenia 
34, 35

. The genomic 

window associated with the FA of the superior longitudinal fasciculus covered genes DLL1, 

FAM120B and MIR4644, these neighboring genes have been reported to be responsible for 

structural brain abnormalities with a hypothesized leading role of DLL1 in interacting with 

other adjacent genes 
36, 37, 38, 39, 40

. Moreover, DLL1 has  also  been identified as a candidate 

gene for intellectual disability 
39

. The REL hit related to the volume of postcentral gyrus 

covered the gene DNAH3 which has significant associations with major depressive disorder 
41

. While the GWAS hit for the same brain phenotype was found within the gene ZNF536 

which is highly expressed in the developing central nervous system and is related to neural 

differentiation 
42

. Moreover, some genes identified in our study were reported to be 

associated with brain structure (e.g., PCDHGA1 
43

), healthy aging (e.g., PCDHGA3 
44

) and 

intractable epilepsy (e.g., SLC35A2 
45

).  
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We were interested in testing the possibility that relatedness between individuals at or near 

a functional variant provides a more generally applicable indicator that trait values are 

similar compared with a classical GWAS. For this, we conducted a simulation analysis in 

which we chose a selection of windows covering a wide range of levels of LD. Within each 

window we created a correlation between phenotype and genotype at one SNP, removed 

this SNP, and then tested to see whether local LD is sufficient to drive an association. In 

practice, higher LD with the functional SNP resulted in better performance in both GWAS 

and REL. GWAS is more sensitive than REL when the simulated signal is weak, while REL 

tends to outperform GWAS as the strength of simulated signal increases. This analysis 

suggests that the best approach may vary across the genome and that pre-testing for LD 

could allow GWAS to be used where LD is high and regression to be used where LD is low, or 

the local pattern of LD is complex. 

Age-related effects typically introduce large sources of variance in studies of humans, 

including the current study.  All of our brain phenotype measures vary with age, often 

strongly so. This raises questions about how best to achieve control. Here we have used a 

simple linear correction. While this appears to be generally effective, it may be possible to 

improve the method by using a non-linear correction. Equally, although some form of 

correction is undoubtedly necessary, a simple linear correction has the potential to 

introduce age-distribution biases wherever appreciably deviations from a linear relationship 

exist. Conversely, it is possible to imagine genetic factors that operate through either 

emphasising or ameliorating age-related changes, and these could be lost through over-

aggressive control. We hope that a more in-depth analysis of how best to control for age-

related effects will be the subject of future studies. 

Association studies have enjoyed a rather chequered history. Early studies were based on 

modest sample sizes but also modest marker numbers. Progression from microsatellites to 

SNPs saw a dramatic increase in marker number, from a few hundreds to several hundreds 

of thousands, an increase that was accompanied by concerns about the rate of false 

positives 
46, 47, 48, 49, 50

. To compensate, many studies aimed to increase sample sizes to 

thousands, tens of thousands or more. In addition, the statistical methods have been 

constantly refined, while genome sequencing coupled with imputation has further increased 

marker coverage. In comparison, our study uses modest sample sizes. However, our dataset 

is like a number of others in being limited by extrinsic factors, in our case by the number of 

individuals for which in-depth phenotypic data could be collected. Similarly, we deliberately 

avoided the most recent ‘cutting edge’ GWAS methods so that our results are broadly 

comparable to a range of prior studies. Despite this, we still find a number of reasonably 

convincing hits that lead us to believe that our approach can offer a novel view both for 

other smaller datasets 
51

 and, with development, as a method that could offer 

improvements to the analysis of larger datasets as well. 

In conclusion, we have systematically compared the classical GWAS with a pair-wise 

relatedness-based approach, REL, using empirical data from human brain structural 

measures, as well as simulated data which evaluated the performance of these two 

approaches with respect to local LD and signal strength. Both approaches succeeded in 
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identifying genetic variants associated with brain structure, though they tend to give distinct 

results given the very different aspects of genetic properties used. Moreover, simulation 

results show that GWAS outperforms REL when the signal is relatively weak. As the signal 

strength increases, the collective effects due to local LD boost the performance of REL, 

making it more successful than GWAS in picking up the signal. Thus, REL provides an 

alternative way to provide complementary results for the search of genetic associations in 

future studies.   
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Figures and Captions 

 

Fig. 1 (a) Grey matter ROIs of the Harvard Oxford Atlas (HOA) and white matter tracts 

defined by the John Hopkins University (JHU) altas. (b) Illusration of the calulation of local 

genetic relatedness and brain structural relatedness. Elements in the upper triangular part 

of each relatedness matrix (except for the diagonals) were vectorised and used in the 

regression model. N: number of participants, GM: grey matter, WM: white matter, FA: 

fractional anisotropy, PC1: first principle compent. 
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Fig. 2 Illustration of simulation for the comparison between GWAS and REL. (a) Left: 

Individual phenotype measures of GM PC1 (orange dots) were sorted acorrding to the 

genotypes (blue dots) of the functional SNP in a genomic window. Gaussian noise was then 

added to obtain the simulated phenotype (black dots) with a certain SNR (i.e., �
���	��
�/

��	
�� , SNR = 1 in this example). Right: comparison between the true signal (sorted 

phenotypes) and the simulated signal with noise. (b) Schematic diagram pipeline of the 

simulation for both GWAS and REL.  
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Fig. 3 Ideogram of loci associated with global or regional brain structure measures as 

revealed by GWAS or REL (Figure created using PhenoGram: 

http://visualization.ritchielab.psu.edu/phenograms/plot). FA: fractional anisotropy. 
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Fig. 4 P-P plots comparing the results of GWAS and REL. In the figures on the left, 50kb 

genomic windows with a REL p-value less than 0.05 were first selected, their REL p-values 

were plotted against the lowest GWAS p-value among SNPs in the window. In the figures on 

the right, SNPs with a GWAS p-value less than 0.05 were selected, their GWAS p-values 

were plotted against the REL p-values of the genomic windows they belong to. Note that 

REL p-value was obtained from permutation test. GWAS p-value is the Wald p-value. (a) 

Results of the first principle component of white matter tract FA where a hit window was 

identified in REL. (b) Results of the white matter tract #05 where a GWAS hit was found. N: 

number of genomic windows (left) or SNPs (right) above threshold.  
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Fig. 5 GWAS and REL hits with or without robust regression. (a) Loci associated with grey 

matter and white matter measures identified in GWAS. Number of individuals is listed in the 

parentheses after each additively coded genotype along the x-axis (0 - homozygous 

reference alleles, 1 - heterozygous alleles, 2 - homozygous alternative alleles). (b) REL results 

of the first principle component of grey matter volume and white matter tract FA for both 

50kb- and 100kb window. Shade indicates 95% confidence interval. 
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Fig. 6 Simulation results for GWAS and REL with different SNRs. Both GWAS p-value and REL 

p-value were based on non-parametric permutation test. Dots are colored by the LD of 

genomic window or SNP, or the density calculated as the percentage of dots in each 0.6 x 

0.6 grid. (a) Simulation results with the SNP in the highest overall LD with the other SNPs in 

the genomic window as functional SNP. (b) Simulation results with the SNP in the lowest 

overall LD with the other SNPs as functional SNP.     
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Fig. 7 Summary of the performance of GWAS and REL for detecting simulated signals with 

different SNRs. (a) Ratio of the cases where GWAS outperforms REL to the cases the other 

way around. S1: number of dots in the upper left triangle. S2: number of dots in the lower 

right triangle. MaxLD fSNP: functional SNP was selected as the one in highest overall LD with 

the other SNPs. MinLD fSNP: functional SNP was selected as the one in lowest overall LD with 

the other SNPs. (b) Detection rate (percentage of cases where permutation p-value reached 

the minimal value, i.e., no outliers found in 1000 permutations) for MaxLD fSNP. (c) 

Detection rate for MinLD fSNP.  

 

 

 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted September 12, 2020. . https://doi.org/10.1101/2020.08.07.239103doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.07.239103
http://creativecommons.org/licenses/by-nc-nd/4.0/

